DPP - 9 (Kinematics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/52

Video Solution on YouTube:- https://youtu.be/csSSyQRjWeY

https://physicsaholics.com/note/notesDetalis/74

Q 1. A glass wind screen whose inclination with the vertical can be changed is mourned on a car. The car moves horizontally with a speed of $2 \mathrm{~m} / \mathrm{s}$. At what angle a with the vertical should the wind screen be placed so that the rain drops falling vertically downwards with velocity $6 \mathrm{~m} / \mathrm{s}$ strike the wind screen perpendicularly?
(a) $\tan ^{-1}\left(\frac{1}{3}\right)$
(b) $\tan ^{-1}(3)$
(c) $\cos ^{-1}(3)$
(d) $\sin ^{-1}\left(\frac{1}{3}\right)$

Q 2. A stationary person observes that rain is falling vertically down at $30 \mathrm{~km} / \mathrm{h}$. A cyclist is moving on the level road, at $10 \mathrm{~km} / \mathrm{hr}$. In which direction the cyclist should hold his umbrella to prevent himself from rain.
(a) $\tan ^{-1} \frac{1}{3}$ from horizontal
(b) $\tan ^{-1} 3$ from vertical
(c) $\tan ^{-1} \frac{1}{3}$ from verfical
(d) $\tan ^{-1} 3$ from horizontal

Q 3. A man moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$ on a horizontal road observes that raindrops fall at an angle of 45° with the vertical. When he moves with a velocity of $16 \mathrm{~m} / \mathrm{s}$ along an inclined plane, which is inclined at 30° with the horizontal, he observes raindrops falling vertically downward as shown in the figure. Find the actual velocity of the raindrops.

(a) $8 \sqrt{3} \hat{\imath}+(8 \sqrt{3}-5) \hat{\jmath}$
(b) $8 \sqrt{3} \hat{\imath}-(8 \sqrt{3}-5) \hat{\jmath}$
(c) $(8 \sqrt{3}-5) \hat{\imath}+8 \sqrt{3} \hat{\jmath}$
(d) $(8 \sqrt{3}+5) \hat{\imath}-8 \sqrt{3} \hat{\jmath}$

Q 4. A man is walking at a speed $3 \mathrm{~m} / \mathrm{s}$ rain drops are falling vertically with a speed $3 \mathrm{~m} / \mathrm{s}$
(i) What is the velocity of rain drop with respect to the man?
(ii) At what angle from vertical, the man should hold his umbrella ?
(a) $2.42 \mathrm{~m} / \mathrm{s}, 30^{\circ}$ in forward direction
(b) $4.24 \mathrm{~m} / \mathrm{s}, 45^{\circ}$ in forward direction
(c) $1.24 \mathrm{~m} / \mathrm{s}, 60 \mathrm{o}$ in forward direction
(d) None of these

Q 5. Rain is falling vertically with a speed of $20 \mathrm{~m} / \mathrm{s}$ relative to air. A person is running in the rain with a velocity of $5 \mathrm{~m} / \mathrm{s}$ and a wind is also blowing with a speed of $15 \mathrm{~m} / \mathrm{s}$ (both towards east). Find the angle with the vertical at which the person should hold his umbrella so that he may not get drenched.
(a) $\tan ^{-1} 2$
(b) $\tan ^{-1} \frac{1}{\sqrt{2}}$
(c) $\tan ^{-1} \frac{1}{2}$
(d) $\tan ^{-1} 3$

Q 6. Wind is blowing in the north direction at speed of $2 \mathrm{~m} / \mathrm{s}$ which causes the rain to fall at some angle with the vertical. With what velocity should a cyclist drive so that the rain appears vertical to him :
(a) $2 \mathrm{~m} / \mathrm{s}$ south
(b) $2 \mathrm{~m} / \mathrm{s}$ north
(c) $4 \mathrm{~m} / \mathrm{s}$ west
(d) $4 \mathrm{~m} / \mathrm{s}$ south

Q 7. Raindrops are falling vertically with a velocity $10 \mathrm{~m} / \mathrm{s}$. To a cyclist moving on a straight road the rain drops appear to be coming with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The yelocity of cyclist is :-
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$
(c) $20 \mathrm{~m} / \mathrm{s}$
(d) $203 \mathrm{~m} / \mathrm{s}$

Q 8. To man running at a speed of $5 \mathrm{~m} / \mathrm{sec}$, the rain drops appear to be falling at an angle of 45° from the vertical. If the rain drops are actually falling vertically downwards, then velocity in $\mathrm{m} / \mathrm{sec}$ is
(a) 5
(b) $5 \sqrt{3}$
(c) $5 \sqrt{2}$
(d) 4

Q 9. A stationary man observes that the rain strikes him at an angle 60° to the horizontal. When he begins to move with a velocity of $25 \mathrm{~m} / \mathrm{s}$ then the drops appear to strike him at an angle of 30° from horizontal. The velocity of the rain drops is :
(a) $25 \mathrm{~m} / \mathrm{s}$
(b) $50 \mathrm{~m} / \mathrm{s}$
(c) $12.5 \mathrm{~m} / \mathrm{s}$
(d) $24 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Q 10. Rain is falling with speed $10 \mathrm{~m} / \mathrm{s}$ at angle 37° with vertical. To a moving man raindrops appear to fall with $8 \sqrt{2} \mathrm{~m} / \mathrm{s}$. Possible speed(s) of man is(are)?
(a) $1 \mathrm{~m} / \mathrm{s}$
(b) $6 \mathrm{~m} / \mathrm{s}$
(c) $11 \mathrm{~m} / \mathrm{s}$
(d) $15 \mathrm{~m} / \mathrm{s}$

Q 11. Barrel of an Indian Army tank is at angle 53° with vertical as shown in figure. Rain is falling at angle 45° with vertical with speed $10 \sqrt{2} \mathrm{~m} / \mathrm{s}$. What can be the speed of tank in order to prevent the surface of barrel from being wet?

(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $6.66 \mathrm{~m} / \mathrm{s}$
(c) $3.33 \mathrm{~m} / \mathrm{s}$
(d) $0.33 \mathrm{~m} / \mathrm{s}$

Answer Key

Q. 1 b	$0.2 c 2$	Q. 3	b	Q. 4	b	Q. 5 c
Q. 6 b	Q. 7 b	Q. 8	a	Q. 9	a	Q. 10 b,c
Q. 11 c						

